US 9,218,467 B2

3

tions of the variables to produce shuffled stack locations; and
updating the stack locations of the variables with the shuftfled
stack locations.

The identifying the stack locations may include identifying
variables in object code, and the updating the stack locations
of'the variables may include updating the object code with the
shuffled stack locations.

The identifying the stack locations may include identifying
variables in binary code, and the updating the stack locations
of'the variables may include updating the binary code with the
shuffled stack locations.

The identifying the stack locations may include identifying
variables in executable code loaded into memory, and the
updating the stack locations of the variables may include
updating the executable code loaded into memory with the
shuffled stack locations.

The shuffling the stack locations of the variables to produce
shuftled stack locations and the updating the stack locations
of the variables with the shuftled stack locations may occur
prior to execution of the executable code.

The shuffling the stack locations of the variables to produce
shuftled stack locations and the updating the stack locations
of the variables with the shuftled stack locations may occur
during execution of the executable code.

According to one embodiment of the present invention, a
computer system includes a processor; and memory storing
program instructions, the program instructions being config-
ured to control the computer system to: identify a plurality of
stack locations corresponding to a plurality of variables;
shuftle the stack locations of the variables to produce shuffled
stack locations; and update the stack locations of the variables
with the shuffled stack locations.

The identifying the stack locations may include identifying
variables in object code, and the updating the stack locations
of'the variables may include updating the object code with the
shuffled stack locations.

The identifying the stack locations may include identifying
variables in binary code, and the updating the stack locations
of'the variables may include updating the binary code with the
shuffled stack locations.

The identifying the stack locations may include identifying
variables in executable code loaded into memory, and the
updating the stack locations of the variables may include
updating the executable code loaded into memory with the
shuffled stack locations.

The shuffling the stack locations of the variables to produce
shuftled stack locations and the updating the stack locations
of the variables with the shuftled stack locations may occur
prior to execution of the executable code.

The shuffling the stack locations of the variables to produce
shuftled stack locations and the updating the stack locations
of the variables with the shuftled stack locations may occur
during execution of the executable code.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifica-
tion, illustrate exemplary embodiments of the present inven-
tion, and, together with the description, serve to explain the
principles of the present invention.

FIG. 1 is a schematic diagram of a typical computer sys-
tem.

FIG. 2 is a schematic diagram illustrating a stack smashing
buffer overflow attack.

FIG. 3 is a schematic diagram of an exemplary stack before
and after being shuffled in accordance with an embodiment of
the present invention.

20

30

40

45

60

4

FIG. 4 is a process flow diagram illustrating a method of
randomizing the locations of variables on the stack during a
standard build process in accordance with one embodiment of
the present invention.

FIG. 5 is a process flow diagram illustrating a method of
randomizing the locations of variables on the stack in a com-
piled and linked executable binary file (or binary) in accor-
dance with one embodiment of the present invention.

FIG. 6 is a process flow diagram illustrating a method of
randomizing the locations of variables on the stack after a
compiled and linked executable binary file (or binary) is
loaded into memory for execution in accordance with one
embodiment of the present invention.

FIG. 7 is a process flow diagram illustrating a method of
randomizing the locations of variables on the stack during
execution in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION

In the following detailed description, only certain exem-
plary embodiments of the present invention are shown and
described, by way of illustration. As those skilled in the art
would recognize, the invention may be embodied in many
different forms and should not be construed as being limited
to the embodiments set forth herein. Like reference numerals
designate like elements throughout the specification.

Embodiments of the present invention are directed to meth-
ods, systems, and programs for improving the security of a
computer system against code injection attacks by shuffling
(or randomizing) the order of local function variables on the
stack. Embodiments of the present invention may be imple-
mented as a computer programmed in any of a number of
programming languages such as x86 assembly, C, Python,
and Java. Embodiments of the present invention may also be
implemented as a computer program stored on a non-transi-
tory computer readable medium embodying program instruc-
tions. Some embodiments of the present invention are
directed to the method of performing the processes described
below.

FIG. 3 is aschematic diagram of an exemplary stack before
and after being shuffled in accordance with an embodiment of
the present invention. Referring to FIG. 3, prior to stack
randomization, the stack 102 includes (in order from the
bottom of the stack toward the top of the stack 112): a return
address, local variable 3, an attackable buffer, local variable 2,
and local variable 1. In exemplary stack 102, there is a critical
distance (Cd,,,.) between the return address and the address
of the attackable buffer, where critical distance is the sum of
the size of the local variable 3 and the size of the attackable
buffer.

Stack 104 in FIG. 3 shows the stack after stack randomiza-
tion. In stack 104, local variable 1 and local variable 2 are now
located between the attackable buffer and the return address.
As such, the critical distance (Cd,,,,) after shuffling is the
sum of the size of local variables 1 and 2 and the attackable
buffer. As such, the critical distance Cd between the attack-
able buffer and the return address is changed by the random-
ization process.

By randomizing this order within individual stack frames
of'a program, an attacker would not be able to know where an
“attackable” buffer would be placed on the stack (the critical
distance Cd), thereby providing additional security against
stack-based exploits by frustrating or preventing an attacker’s
ability to craft an appropriate attack payload due to the uncer-
tainty in the distance between the start of the buffer and the
location of the return address on the stack. While code injec-



